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Abstract: Understanding the spatial patterns and drivers of species richness is crucial for
biodiversity conservation. Using data from Pladias, a comprehensive botanical database of the
Czech Republic, we mapped the richness of various plant species groups across grid cells in the
country and examined the effects of current environmental conditions, current landscape struc-
ture, and historical landscape development. We also applied five methods to account for uneven
sampling intensity and found that only rarefaction provided estimates of species richness inde-
pendent of sampling intensity. Using spatial error models and a variation partitioning approach,
we showed that plant richness at the country scale is predominantly driven by current environ-
mental conditions. For overall species richness, as well as for native and threatened species
richness, the most important factors were the proportion of carbonate bedrock and the level of
climate moisture, while the heat sum in the growing season was crucial for naturalized alien
species richness. Historical landscape development, especially the long-term continuity of for-
ests and grasslands, significantly influenced the richness of all, native, and particularly threat-
ened species. Human population density was positively related to all species groups, emerging
as the most important variable for the richness of naturalized alien species. However, our study
shows that uneven sampling intensity in the Pladias database may distort the effect of certain
environmental factors, such as the heat sum in the growing season. These findings emphasize the
importance of carefully considering the uneven intensity of sampling before analysing species
richness and highlight the role of current environmental variables, current landscape structure,
and historical landscape development in shaping plant species richness at the regional scale.
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Introduction

Species richness, the number of species within a defined region, is the most widely used
and conceptually straightforward way of quantifying biodiversity. The spatial patterns
and underlying factors influencing species richness across different temporal and spatial
scales have been the subject of research for several decades (e.g. Gaston 2000, Slezák &
Axmanová 2016, Večeřa et al. 2019, 2021, Němec et al. 2022) and are still of fundamen-
tal importance to disciplines such as biogeography, macroecology, community ecology,
and nature conservation (Maestre 2004, Divíšek & Chytrý 2018), especially in the light
of recently documented biodiversity decline (IPBES 2019).

Many studies have shown that environmental factors, such as climate, topography, and
soil properties, play a crucial role in shaping plant species richness across landscapes
(Chytrý et al. 2003, Field et al. 2008, Moeslund et al. 2013, Stein et al. 2014, Jonas et al.
2015). However, the relative importance of these factors depends strongly on the spatial
scale and resolution of the study (Pearson & Dawson 2003, Zarzo-Arias et al. 2022). At
global and continental scales and coarser spatial resolutions, climate is usually a major
factor, while soil properties, disturbances, and biotic interactions become more influen-
tial at regional and local scales, particularly when finer spatial resolutions are considered
(Meineri et al. 2012, Dubuis et al. 2013, Paniw et al. 2015, Huang et al. 2021). In addi-
tion, human activities significantly alter the environment and have a massive impact on
species richness (Bergčs et al. 2017, IPBES 2019), especially in regions with centuries of
human influence, such as central Europe (Berglund 2011). Last but not least, numerous
studies have shown that high species richness and the occurrence of threatened or dis-
persal-limited species are often associated with long-term continuity of land use and hab-
itats in the landscape (e.g. Hájková et al. 2011, Dullinger et al. 2013, Bergčs et al. 2017,
Raduła et al. 2022). Nevertheless, few studies have directly investigated the combined
effects of current environmental conditions, current landscape structure, and land-cover
stability over time on plant species richness. The limited availability of historical land-
cover maps has prevented such larger syntheses; therefore, only studies at the local scale
have been conducted so far (e.g. Gustavsson et al. 2007, Zimmermann et al. 2010, Němec
et al. 2022, Raduła et al. 2022), although historical land-cover dynamics can significantly
influence plant richness at the regional scale (Pearson & Dawson 2003). One of the few
examples of larger synthesis is the study by Midolo et al. (2025), who investigated the
effect of historical land cover on grassland species richness in the borderland between
Austria and the Czech Republic.

With the exponential increase in data availability on the occurrence of plant species
(Wüest et al. 2019), there is a unique opportunity to analyse general patterns and mecha-
nisms in the spatial distribution of plant species richness across different scales and habi-
tat types (e.g. Dubuis et al. 2011, Divíšek & Chytrý 2018, Večeřa et al. 2019, 2021,
Szymura et al. 2023). However, plant occurrence records have been collected for differ-
ent purposes, focusing on flora mapping, nature conservation inventories or vegetation
survey, using various methodologies and sampling intensities, which may potentially
lead to various types of sampling bias (Engemann et al. 2015, Wild et al. 2019) and con-
sequently to misinterpretations of species richness patterns (Yang et al. 2013, Wild et al.
2019, Zizka et al. 2020). Vegetation plots are often collected nonrandomly in space
(Meineke & Daru 2021) and areas that have been surveyed more intensively tend to
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appear richer in species than those surveyed less intensively. Consequently, a strong cor-
relation between species richness and sampling intensity is often present, as demon-
strated by Yang et al. (2013) and Engemann et al. (2015). To some extent, this pattern is
natural and realistic, as species-rich areas tend to attract more survey effort. However, the
overall effect of uneven sampling intensity on species richness patterns and the interpre-
tation of their drivers remains poorly understood. Furthermore, potential sampling bias
also depends on the spatial resolution, particularly on grid cell size when data from grid
cell mapping are used in the analysis. According to Sousa-Baena et al. (2013) and
Engemann et al. (2015), sampling bias tends to be stronger at finer spatial resolutions due
to lower and more uneven data coverage compared to coarser spatial resolutions, and it is
also more pronounced in undersampled regions (Yang et al. 2013).

The issue of varying sampling intensity and the need to correct for related biases is
often inadequately addressed or oversimplified in species richness studies (e.g. Chytrý et
al. 2021, Pyšek et al. 2022, Macek et al. 2023). Therefore, various approaches have been
suggested to obtain more realistic estimates of species richness. These include: (i) non-
parametric asymptotic estimators (e.g. Burnham & Overton 1978, 1979, Chao 1984, 1987,
Wang & Lindsay 2005), which infer total species richness from the frequency of detected
rare species; (ii) parametric asymptotic models (e.g. Soberón & Llorente 1993, Jiménez-
Valverde & Lobo 2006), which extrapolate species richness based on sample-based accu-
mulation curves; and (iii) parametric nonasymptotic rarefaction estimators (Sanders
1968), which estimate the expected number of species for a given sample size based on
the number of individuals or samples. Performance of these estimators highly varies, and
their accuracy depends on the shape of species-abundance data distribution and the sam-
ple size (Willie et al. 2012, Gwinn et al. 2015). For instance, Walther & Moore (2005)
reviewed studies comparing the performance of species richness estimators and proposed
that nonparametric estimators (mostly Chao and jackknife) outperform curve models or
methods fitting species-abundance distribution, a conclusion later supported by Willie et
al. (2012). However, most of these studies were conducted at the landscape scale and at
fine spatial resolutions. In contrast, Engemann et al. (2015) tested six nonparametric and
parametric methods (Margalef richness index, Chao1, second-order jackknife, bootstrap-
ping resampling methods, Hill numbers, and rarefaction) to correct for the effect of sam-
pling bias at the country scale and across various spatial resolutions, concluding that only
rarefaction provided a suitable solution. Given the contradictory results and the limited
number of studies focused on broader scales and coarser resolutions, this topic requires
a cautious approach, and it is necessary to compare results from multiple methods when
estimating species richness based on raw data.

The Czech Republic has a long tradition of botanical research (Danihelka et al. 2017),
which has fostered the development of comprehensive national vegetation and floristic
databases: the Czech National Phytosociological Database (CNPD; Chytrý & Rafajová
2003) and the Database of the Czech Flora and Vegetation (Pladias; Wild et al. 2019,
Chytrý et al. 2021). At the same time, there is a good coverage of digitized maps of envi-
ronmental variables (e.g. bedrock alkalinity; Chuman et al. 2014), information on fine-
scale habitat distribution (Härtel et al. 2009, AOPK ČR 2024a) and historical topographic
maps suitable for assessing past land-cover changes (spanning from the 1840s to the
2000s; TopoLandUse CZ database, Skokanová et al. 2012). This exceptional availability of
data makes the Czech Republic an ideal model for conducting a comprehensive analysis
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of the factors influencing plant species richness at a country-wide scale. However,
although the Czech Republic is one of the best-surveyed countries in terms of plant spe-
cies occurrence, several authors have noted that both floristic and vegetation records in
the abovementioned databases are affected by uneven sampling intensity across the coun-
try (Chytrý & Rafajová 2003, Wild et al. 2019, Macek et al. 2023). If left unaddressed,
this issue may result in distorted patterns of overall species richness and the representa-
tion of specific species groups, such as alien species.

In this study, we aim to (i) test different methods for reducing the effect of unequal
sampling intensity on species richness patterns; (ii) compare the resulting richness pat-
terns for all vascular plant species, and separately for native, threatened (Red List), and
naturalized alien species; (iii) compare models of observed plant species richness in the
Czech Republic, which is affected by unequal sampling intensity, with models of esti-
mated richness, in which this effect has been reduced; and (iv) assess the relative impor-
tance of variables associated with current environmental conditions, current landscape
structure, and historical landscape development that may influence species richness.

Methods

Study area

Our study area (Supplementary Fig. S1) covers the entire territory of the Czech Republic
(78,867 km2), with an altitudinal range from 115 to 1,603 m a.s.l., mean annual tempera-
tures of 5.0–9.5 °C, and annual precipitation of 320–1,450 mm (Tolasz 2007). According
to CORINE Land Cover (Copernicus 2018), 56.8% of the Czech Republic’s land area in
2018 was covered by agricultural land, 32.9% by forests, 2.8% by open semi-natural veg-
etation types (e.g. natural grasslands, moors, heathlands and bare rock), 6.7% by artificial
surfaces, 0.7% by water bodies, and 0.1% by wetlands.

Significant changes in land cover patterns in the study area began with the Industrial
Revolution in the first half of the 19th century. The area of forests, which had been at its
lowest proportion before this period, gradually increased. Cities expanded, and the extent
of agricultural land peaked, although it began to steadily decline from the first half of the
20th century. During the communist regime (1948–1989), the industrialization of agri-
culture led to the consolidation of large blocks of arable land. The period after 1989 has
been characterized by increased urbanization, but also by the transformation of less fer-
tile arable land to meadows and pastures, and improvements in landscape management
and nature conservation (Bičík et al. 2015, Sychrová et al. 2024).

Species records

The vascular-plant occurrences were obtained from the Pladias database
(https://www.pladias.cz; Wild et al. 2019, Chytrý et al. 2021), which contains 13.6 mil-
lion plant occurrence records assigned to 2,716 grid cells with a size of 5 × 3 minutes
(~ 6.0 km × 5.5 km, i.e. 33 km2). The Pladias database contains data from both floristic
recordings and vegetation plots.

Taxonomic concepts and nomenclature follow Kaplan et al. (2019). For our analyses,
we only considered taxa at the species level but merged some large and taxonomically
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complicated groups into aggregates (e.g. Rubus fruticosus agg.). This was done to ensure
that the number of taxa we analysed (hereafter ‘species’ for simplicity) was not influ-
enced by variations in the level of taxonomic resolution across grid cells. For each grid
cell, we calculated the number of (i) all species, (ii) native species (including native
threatened species, see further), (iii) threatened species included in the Red List of Vascu-
lar Plants of the Czech Republic (categories C1–C4; Grulich 2017), and (iv) naturalized
alien species, including invasive species (Pyšek et al. 2022). Casual alien species (Rich-
ardson et al. 2000), which do not form self-sustaining populations and whose distribution
is mostly driven by local introductions or escapes from cultivation, were not considered
in our analyses. Grid cells localized at the borders of the Czech Republic, with less than
50% of their area within the country (348 cells), were excluded to avoid potential bias,
leaving 2,368 grid cells for the analyses.

For each grid cell, we also calculated the total number of records (the sum of individ-
ual records of all species occurring in the grid cell) as a proxy for sampling intensity,
which was used to estimate species richness.

Selection of species richness estimator

To obtain estimates of species richness that are independent of sampling intensity (Fig. 1A),
we used the following three approaches:

(i) Nonparametric asymptotic estimators. We used three nonparametric asymptotic
estimators: Chao1, jackknife, and the penalized nonparametric maximum likelihood esti-
mator under a Poisson mixture model (PNPMLE), all available in the SPECIES R pack-
age version 1.2 (Wang 2011). These estimators use information about species frequency
in the sample and offer different approaches for considering rare species. Chao1 (Chao
1984) provides lower-bound estimates of species richness, offering a minimum expected
value for the community’s richness. This estimator uses rare species, specifically single-
tons (species represented by exactly one record in the grid cell) and doubletons (species
represented by two records in the grid cell), to infer the number of unobserved species.
The jackknife estimator (Burnham & Overton 1978, 1979) reduces estimator bias by
iteratively removing subsets of data and recalculating the estimator (here, the number of
species per grid cell) with the reduced sample. We utilized the default jackknife order
specified by the argument k equal to 5 and set the confidence interval coverage to 0.95.
The PNPMLE estimator (Wang & Lindsay 2005) is a nonparametric maximum likeli-
hood-based approach that improves estimate’s stability by incorporating a quadratic pen-
alty function into the conditional likelihood. The PNPMLE estimator is calculated for
several subsets selected by a multinomial-based bootstrap, which is also used to construct
a confidence interval. We kept the parameter t, defining the threshold for relatively less
abundant species in the Poisson mixture estimation, at its default value (t = 15), and set C to 1
to calculate the confidence interval.

(ii) Parametric linear regression. We employed ordinary least squares (OLS) regres-
sion to model the relationship between the log-transformed number of species and the
log-transformed number of records per grid cell. Using this model, we predicted the num-
ber of all species for 209 records per grid cell, which was the minimum number of records
across grid cells in our data, excluding outlier values.
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(iii) Rarefaction. We also used the rarefaction method (Sanders 1968), a statistical inter-
polation technique involving the thinning of a reference sample (here, the number of
records per grid cell) by randomly selecting a subset of individual records and subsequently
calculating species richness. In each grid cell, we conducted 1,000 random selections of
records (209 records for an overall richness estimate, Fig. 1B; 173 for native, 100 for threat-
ened, and 100 for naturalized alien species) to calculate the mean number of observed spe-
cies. These thresholds corresponded to the number of records available in the grid cell with
the lowest number of records for each species group (excluding outliers).

To evaluate the performance of the above-mentioned methods, we used Spearman
rank correlation (rho) and tested the relationship between the estimated number of spe-
cies and the number of records. We acknowledge that some correlation between species
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Fig. 1. (A) The number of records of vascular plant species per grid cell (~6.0 km × 5.5 km) in the Pladias data-
base; (B) Rarefaction curves for each grid cell in the Pladias database; (C) Residuals from the linear regression
of the log-transformed number of records and the log-transformed number of species for each grid cell in the
Pladias database. Positive residuals (red) indicate a higher number of observed species than expected from the
sampling intensity based on the regression model, while negative residuals (blue) indicate a lower number of
observed species than expected; (D) Relationship between the log-transformed number of records (x-axis) and the
log-transformed number of all species (y-axis), with a fitted linear trend line and 95% confidence interval bands.



richness and sampling intensity is naturally expected, as species-rich areas tend to attract
more intensive survey effort. Nevertheless, we selected the method with the weakest cor-
relation in order to compare two contrasting approaches for analysing how spatial pat-
terns of species richness and their drivers can be influenced by sampling intensity. We
considered: (i) observed species richness, which is expected to be strongly affected by
sampling intensity, and (ii) estimated richness, for which this effect has been substan-
tially reduced. Therefore, only the estimation method that showed no statistically signifi-
cant (P < 0.05) correlation with sampling intensity was included in further analysis of fac-
tors affecting plant species richness.

Drivers of spatial patterns of species richness

We selected variables that we hypothesized to significantly influence the spatial pattern
of vascular plant species richness across the country, reflecting current environmental
conditions, current landscape structure, and historical landscape development. Spearman
correlation (Supplementary Fig. S2) was used to assess the relationship between each
pair of variables. If two variables exhibited a correlation of rho > 0.8, only the one that
was expected to have an ecologically more meaningful effect on regional differences in
species richness was retained. This selection resulted in 12 variables used for further
analysis (see below and Supplementary Table S1, and Supplementary Fig. S3).

To describe current environmental conditions (Supplementary Fig. S3A), we selected
(A) the climate moisture index (kg·m–2·month–1; cmi) and (B) the heat sum in the growing
season, also known as the growing degree days heat sum above 10 °C (°C; gdd10), from
the CHELSA-BIOCLIM+ (Brun et al. 2022) at a spatial resolution of 30 arc seconds
(~1 km). These variables serve as proxies of the overall energy available for plant growth
and water availability. We also included (C) soil pH from the LUCAS database (Ballabio
et al. 2019) at a spatial resolution of 500 m. For all these variables (A–C), we calculated
the mean value in each grid cell. Moreover, we incorporated (D) the proportion of car-
bonate bedrock in each grid cell (%), obtained from the bedrock alkalinity map of the
Czech Republic (Chuman et al. 2014) at a scale of 1:50,000.

The current landscape structure (Supplementary Fig. S3B) was described by two vari-
ables based on habitat mapping: (E) the proportion of natural habitats (%; aggregated at
the second highest hierarchical level of the national habitat classification, e.g. A4 – subal-
pine tall-herb vegetation or L1 – alder carrs; Chytrý et al. 2010), considering only habitat
patches where representativeness in terms of species composition was assessed as V (dis-
tinct, undoubtedly classifiable) or P (transitional habitat with a significant occurrence of
characteristic species from two or more natural habitats; Lustyk 2016), and (F) the Shan-
non index (Shannon 1948) for natural habitats (aggregated at the same level as in E),
reflecting the representation of different habitats within each grid cell. These variables
were calculated based on the habitat mapping layer of the Czech Republic at a scale of
1:10,000 (AOPK ČR 2024a). Additionally, we calculated (G) the Shannon index (Shan-
non 1948) for land cover categories, based on the Czech topographic base map from
2002–2006, using the TopoLandUse CZ database (Skokanová et al. 2012). This database
distinguishes eight land cover categories (arable land, grasslands, orchards, vineyards
and hop fields, forests, water bodies, built-up areas, and other areas, including mining
areas or dump sites). We also incorporated (H) human population density (people·km–2)
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that we calculated as the total human population per each grid cell, based on the data from
the 2021 Census of Population, Houses and Apartments (Czech Statistical Office 2021; at
a 250 m spatial resolution), relative to the area of the grid cell.

To integrate the historical landscape development (Supplementary Fig. S3C) into the
species richness models, we used the TopoLandUse CZ database (Skokanová et al.
2012), which was created by digitizing historical topographic maps for five time periods:
1840s (2nd Austrian Military Survey maps), 1870s (3rd Austrian Military Survey maps),
1950s, 1990s (Czechoslovak military topographic maps from 1952–1956 and 1988–1995),
and 2000s (Czech topographic base map from 2002–2006). The period of the 2000s was
used to depict the current landscape structure (see previous paragraph). Based on this
data, we calculated the stable area of (I) grasslands, (J) forests, and (K) built-up areas as
the proportion (%) of land in each grid cell that has not changed its land cover type (i.e.
grassland, forest, or built-up area) since the 1840s. Finally, we considered (L) landscape
dynamics, which was calculated using the Ružička index (Ružička 1958; a quantitative
version of the Jaccard index). For each grid cell, we created a matrix of five time periods
× eight land cover categories, where the values represented the proportion of each land
cover category in a given period (% of total area). Applying the Ružička index to this data
resulted in a dissimilarity matrix. The dissimilarities between each pair of consecutive
periods were averaged to obtain a single value representing the historical landscape
dynamics in each grid cell (the higher the value, the higher the historical landscape
dynamics). All calculations and data processing were performed using ArcGIS 10.8
(ESRI 2020) and R 4.2.2 software (R Core Team 2024).

Statistical analyses

To assess the effects of the 12 variables described above (Supplementary Table S1) on the
spatial patterns of both the observed and estimated species richness, we employed spatial
error models (SEMs), implemented with the errorsarlm function of the spdep R package
version 1.3.8 (Bivand 2022). We chose this method because our data exhibited spatial
autocorrelation, and preliminary analyses using ordinary least squares (OLS) regression
indicated that a statistically significant (P < 0.05) spatial autocorrelation persisted in the
residuals of these models (results not shown). For all species and each species group (i.e.
native, threatened, and naturalized alien species), we constructed models in which the
dependent variable (yi) was represented by either observed or estimated species richness,
and the independent variables (xi) included all 12 predictors simultaneously. To ensure
comparability between the SEMs for observed and estimated richness, we included only
those grid cells for which a rarefied number of species was calculated: 2,364 grid cells for
all and native species; 1,895 for threatened species; and 1,925 for naturalized alien spe-
cies. Additionally, we created an alternative set of models of observed species richness in
which we accounted for uneven sampling intensity by including the log-transformed
number of records as an additional explanatory variable. Results of these models are
available in Supplementary Fig. S5. In each model, human population density, the pro-
portion of carbonate bedrock, stable area of forests, grasslands, and built-up areas were
log-transformed using the log1p function (R Core Team 2024), which calculates the natu-
ral logarithm of each predictor plus 1. All explanatory variables were standardized to
zero mean and unit variance. The SEMs use the following equation:
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yi = �0 + xi� + ��i�i + �i

where � represents the coefficients to be estimated, xi is the predictor variable, ��i�i is
a spatially dependent error term, and �i indicates a spatially uncorrelated error term. The
parameter � determines the degree of correlation among the errors based on the spatial
weight matrix �i.

The spatial weight matrix, used to account for spatial autocorrelation in SEMs, was
constructed based on Moran’s correlograms calculated for each dependent variable using
the correlog function in the pgirmess R package version 2.0.2 (Giraudoux 2023). In each
correlogram, the distance at which the spatial autocorrelation decreased to zero was
recorded. Grid cells within this distance were considered neighbouring when construct-
ing the spatial weight matrix using the dnearneigh and nb2listw functions from the spdep
R package version 1.3.8 (Bivand 2022). For each model, we extracted summary statis-
tics, including R2, using the glance function from the broom R package version 1.0.3
(Robinson et al. 2023). Finally, the residuals of these models were tested for spatial auto-
correlation using the global Moran’s index (Moran 1948).

To identify the relative importance of the three groups of explanatory variables (i.e.
current environmental conditions, current landscape structure, and historical landscape
development) on both observed and estimated species richness, we employed the varia-
tion partitioning approach (Borcard et al. 1992) as implemented in the varpart function
from the vegan R package version 2.6.4 (Oksanen et al. 2022). To ensure comparability,
we included the same grid cells for both observed and estimated richness in the variation
partitioning models (see above for the number of grid cells for different species groups).
To account for potential nonlinear relationships, we also incorporated quadratic and
cubic functions of each explanatory variable. All polynomial functions were retained in
the variation partitioning models without further selection to capture the full range of
possible nonlinear effects. The results were visualized using Venn diagrams that show the
percentage of variation explained by each group of explanatory variables. When inter-
preting these diagrams, it is important to note that negative shared variation can occur
when a group of variables has close-to-zero correlation with the dependent variable but is
at the same time correlated with another group of variables that is strongly correlated with
the dependent variable (Azen & Budescu 2003). Negative shared variation can also arise
when two strongly correlated groups of variables exert opposing effects on the dependent
variable, one positive and the other negative (Legendre & Legendre 1998).

Results

Species richness patterns and sampling intensity

Using the number of records per grid cell in the Pladias database (Fig. 1A) as a measure
of sampling intensity, we found that grid cells within protected areas (e.g. Český kras
Protected Landscape Area (PLA), Krkonoše National Park (NP), Křivoklátsko PLA,
Šumava NP, Bílé Karpaty PLA; AOPK ČR 2024b, c) and those situated near large cities
(e.g. Prague and Brno) had higher sampling intensity (see Supplementary Fig. S1 for the
locations of these areas). In contrast, grid cells that are less attractive in terms of natural
values and further away from large cities were sampled less intensively (e.g. the Dyjsko-
svratecký úval lowland, parts of the Krušné Mts, and the Plzeňská pahorkatina uplands).
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Fig. 2. Spatial patterns of species richness of (A) all, (B) native, (C) threatened (Red List), and (D) naturalized
alien species in the Czech Republic. Observed richness (left column) represents the number of species without
accounting for sampling intensity; estimated species richness (right column) was calculated using rarefaction
curves for 209 (all species), 173 (native species) and 100 (threatened and naturalized alien species) records per
grid cell (~6.0 km × 5.5 km). Grey colour indicates grid cells with a lack of records for rarefaction. The number of
species per grid cell was classified by quantiles, ensuring that each class contains an equal number of grid cells.



The observed species richness showed a significantly positive Spearman correlation
(rho = 0.72) with the number of records, as also evidenced by a visual comparison of the
maps of sampling intensity (Fig. 1A) and species richness patterns (Fig. 2 or Supplemen-
tary Fig. S4, column ‘Observed’). The linear regression of the log-transformed number of
species and records per grid cell (R2

Adj = 0.58; Fig. 1D) also confirmed this finding. The
analysis of residuals from this model revealed positive spatial autocorrelation across the
Czech Republic (Moran’s I = 0.51, P < 0.001; Fig. 1C). Residuals with high positive val-
ues, indicating areas where more species were recorded than would be expected based on
sampling intensity, were found close to large cities (e.g. Brno, České Budějovice, Hradec
Králové, Prague), in the foothills of the Šumava Mts, Orlické Mts, and in some protected
areas (e.g. České středohoří PLA, Podyjí NP, Pálava PLA, Železné hory PLA). The high-
est observed species richness of all, native, threatened, and naturalized alien species (Fig.
2 or Supplementary Fig. S4, column ‘Observed’) was recorded in the PLAs Český kras,
České středohoří, Křivoklátsko, Moravský kras, Pálava, Bílé Karpaty, and Železné hory,
and grid cells in or near Prague and Brno. Conversely, species richness coldspots for all
these groups were found in the Krušné Mts and in the PLAs Jizerské hory, Český les, and
partly in Šumava NP, Novohradské Mts, Jeseníky PLA, as well as in agricultural low-
lands such as the Dyjsko-svratecký úval.

We found contrasting results among the methods estimating species richness while
reducing the effect of sampling intensity. Except for rarefaction, all estimates, whether
based on nonparametric asymptotic estimators or linear regression, showed statistically
significant correlations (P < 0.05) with the number of records (Fig. 3). The results of all
estimators, especially the nonparametric ones, were significantly positively correlated
with each other. The highest correlations were found between sampling intensity and the
nonparametric estimates of species richness, namely PNPMLE (rho = 0.64) and Chao1
(rho = 0.63). The species richness estimated through OLS exhibited a weak but statisti-
cally significant negative correlation with sampling intensity (rho = –0.19). Only rarefac-
tion showed estimates independent of sampling intensity (rho = 0.07, P = 0.056). There-
fore, we selected rarefied species richness for further analysis and for comparisons with
observed patterns. Although the spatial patterns of species richness estimated by rarefac-
tion differed the most from the observed patterns, most hotspots still overlapped with
those of observed species richness. The Bílé Karpaty PLA remained a biodiversity
hotspot for all, native and threatened species, while the pattern changed for naturalized
alien species (Supplementary Fig. S4) after rarefaction. The regions with the lowest esti-
mated number of species across all groups (Fig. 2 or Supplementary Fig. S4, column ‘Es-
timated’) were the Krušné Mts, Šumava NP, and Jizerské hory PLA.

Factors influencing plant species richness

To identify the factors with the strongest effects on the distribution of species richness
across different species groups, we used spatial error models (SEMs) with (i) observed
(Fig. 4A) and (ii) rarefaction-estimated (Fig. 4B) species richness as the dependent vari-
able. The three most important variables in the model for observed richness of all and
native species were the stable area of forests (positive effect), the proportion of carbonate
bedrock (positive effect), and human population density (positive effect). For threatened
species, soil pH (positive effect) emerged as the third most important variable, following
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the stable area of forests and the proportion of carbonate bedrock (both with positive
effects). In the model for observed richness of naturalized alien species, human popula-
tion density (positive effect) was the key variable, followed by heat sum in growing sea-
son (positive effect) and stable area of forests (positive effect).
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Fig. 3. Spearman rank correlation coefficients between species richness estimates and the number of records,
along with histograms showing their distributions and scatterplots illustrating their relationships. Only the
relationship between the number of records and the rarefied number of species was not statistically significant.
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Fig. 4. Coefficients of variables used in spatial error models to predict (A) observed and (B) estimated numbers of
all, native, threatened (Red List), and naturalized alien species in the Czech Republic. The dots represent coeffi-
cient estimates, and the error bars indicate the standard error on each side. Statistically significant (P < 0.05) vari-
ables are depicted by filled dots. Environmental variables are shown in blue, current landscape variables in green,
and historical landscape variables in red. For the models of observed richness, summary statistics are provided,
including the number of grid cells used in the analysis, the total number of species across these grid cells, and the
minimum, maximum, mean, and standard deviation of the number of species within the grid cells.



For the estimated richness (Fig. 4B) of all and native species, the climate moisture
index emerged as a key predictor, showing a negative relationship with species richness.
Human population density and the proportion of carbonate bedrock were also among the
most influential variables, showing a positive relationship. In the case of threatened spe-
cies, the stable area of forests proved to be the most important variable, followed by
human population density, the proportion of carbonate bedrock, soil pH, the Shannon
index for natural habitats, and the landscape dynamics (all positively related). In the
model of naturalized alien species richness, human population density emerged as the
key variable (positive effect), followed by the climate moisture index (negative effect)
and the heat sum in the growing season (positive effect).

In general, the importance and ranking of individual predictors varied between the
SEM models for observed and estimated species richness, depending on the species
group. The most pronounced differences were found in the models of observed and esti-
mated richness of all and native species. While the stable area of forests was the most
important variable for observed richness, it was not among the top three variables for esti-
mated richness. The heat sum in the growing season exhibited a nonsignificant positive
effect on observed richness of all species but showed a significant negative effect on esti-
mated richness. For native species, the heat sum in the growing season had an nonsignifi-
cant positive relationship with observed richness but a significant negative relationship
with estimated richness. Soil pH was statistically nonsignificant in the SEMs for observed
richness of both all and native species, while it had a statistically significant positive
effect in the SEMs for estimated richness. In the case of threatened species, the ranking of
the most important variables was very similar in the models of both the observed and esti-
mated species richness. In contrast, for naturalized alien species, the climate moisture
index was not statistically significant in the model for observed richness but showed
a significant negative effect in the model for estimated richness. Another factor, the Shan-
non index for current land cover (2000s), had a statistically significant negative relation-
ship with observed richness but was not significant for estimated richness. Moreover,
variables representing historical landscape development were not statistically significant
in the model for estimated richness, whereas they were significant in the model for
observed richness.

In the variation partitioning analysis for observed richness (Fig. 5, column ‘Ob-
served’), the pure effect of environmental variables was the highest: 17% for all species,
15% for native species, 29% for threatened species, and 16% for naturalized alien spe-
cies. For estimated richness (Fig. 5, column ‘Estimated’), the analysis revealed that the
highest portion of explained variation in the richness for all, native and naturalized alien
species was attributed to the shared effect of all predictor groups (environmental, histori-
cal, and current landscape). Specifically, 16% of the variation was explained for all spe-
cies, 12% for native species and 21% for naturalized alien species. The pure effect of
environmental variables explained the most variation in the estimated richness of threat-
ened species (19%) and accounted for more variation than historical and current land-
scape variables alone across all species groups. The pure effect of variables describing
current landscape explained less variation or was equally influential as that of historical
landscape variables across all species groups, except for naturalized alien species, for
which the current landscape explained more variation than the historical landscape in
both observed and estimated richness.
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Fig. 5. Variation partitioning of observed (left column) and estimated (right column) species richness of (A) all,
(B) native, (C) threatened (Red List), and (D) naturalized alien species. Venn diagrams show the percentage of
explained variation (R2

Adj, %) in species richness attributed to environmental variables, historical landscape
variables, current landscape variables, and their shared effects.



In addition, we fitted SEMs in which we used the number of records per grid cell as an
additional predictor (Supplementary Fig. S5). It emerged as the most influential factor,
and the total variation explained by the model (R2 = 0.789, for all species) was substan-
tially higher compared to the models for estimated (R2 = 0.374) and observed (R2 =
0.373) species richness, the latter without including the number of records as an
additional predictor.

Discussion

Spatial patterns of species richness

In our study, we found a significant positive relationship between the number of species
and sampling intensity within the Czech flora. A similar pattern has also been found in
other studies that used extensive vegetation and floristic databases, often revealing even
stronger positive relationships (e.g. Yang et al. 2013, Engemann et al. 2015). Some stud-
ies demonstrated that high sampling intensity, often associated with high plant richness,
was typically found in easily accessible locations (near cities and roads) or protected
areas (Engemann et al. 2015, Wild et al. 2019, Hughes et al. 2021). However, species-rich
areas tend to attract more survey effort. Therefore, not only the intensity of sampling
affects the number of species, but also the knowledge of species-rich areas influences the
number of records collected there. A certain degree of correlation between the number of
species and the intensity of sampling is therefore natural. This is consistent with the spa-
tial patterns of the number of species and number of records observed in our study. How-
ever, the limitations in using such data for mapping and studying spatial patterns of spe-
cies richness and underlying factors have already been recognized (Wild et al. 2019,
Macek et al. 2023). Therefore, we used five different methods for estimating the distribu-
tion of species richness independent of sampling intensity, compared selected estimates
with the observed species richness and tested how they are influenced by environmental
and landscape predictors

The species richness estimates produced by nonparametric estimators showed rela-
tively high positive correlations with sampling intensity and were also strongly positively
correlated with each other. According to Poulin (1998), inaccurate and biased estimates
of richness by these methods can be attributed to the presence of many singleton or
doubleton species in the community. This could be the case in our study, where more than
half of the grid cells contained a proportion of rare species (singletons and doubletons)
greater than 50%. We found the most significant differences between the observed
(uncorrected) richness and the richness estimated by nonparametric estimators in grid
cells with low sampling intensity and high representation of singletons and doubletons.

Only the results of the OLS model and rarefaction showed a low correlation with sam-
pling intensity. However, only the rarefaction estimates showed no statistically signifi-
cant relationship with sampling intensity. Therefore, we analysed rarefied species rich-
ness as a contrasting approach to analysing observed richness. The lack of a statistically
significant relationship between species richness estimated by rarefaction and sampling
intensity is consistent with the findings of Engemann et al. (2015), who also conducted
their study at the country scale using grid cells of similar spatial resolution to ours. The
spatial patterns of our rarefied richness estimates closely matched the spatial patterns
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based on observed richness. Most hotspots and coldspots remained unchanged, except
for hotspots of all, native, and threatened species near large cities such as Brno and
Prague, which were diminished following rarefaction. This suggests that rarefaction
largely preserves high species richness in the areas that are both botanically attractive
(i.e. with a high number of records) and represent true richness hotspots, such as the Bílé
Karpaty PLA. Importantly, rarefaction does not underestimate species richness in such
areas. The only notable exception in our study was the Křivoklátsko PLA, where
a hotspot identified in the observed richness did not persist after rarefaction.

The spatial patterns of estimated species richness across the Czech Republic for all,
native, threatened, and naturalized alien species in our study are very similar to those
identified in previous studies conducted in this country, despite the differences in meth-
ods and data sources. For example, Divíšek & Chytrý (2018) used random forest models
calibrated on vegetation plots, while Chytrý et al. (2021) and Pyšek et al. (2022) calcu-
lated the relative number of species using data from the Pladias database. The most nota-
ble differences between the spatial patterns of estimated richness for both all and native
species in our study and those reported in the studies by Divíšek & Chytrý (2018) and
Chytrý et al. (2021) were identified between the Úhlava and Radbuza rivers near the city
of Plzeň. While these studies reported low species richness for both species groups in this
area, our findings showed the opposite. These grid cells exhibited a high proportion of
stable grasslands and forests, along with a high Shannon index for current land cover and
natural habitats, supporting a higher number of estimated species. While Divíšek & Chytrý
(2018) used data from vegetation plots of a few (or a few dozen) square metres for model
calibration and focused solely on grassland and forest vegetation, we used data from the
Pladias database, aggregated into grid cells with a spatial resolution ~ 6.0 km × 5.5 km,
covering various habitat types. Furthermore, we found that the sampling intensity in this
area was low, and the residuals from our linear regression suggested an above-average
number of species relative to the number of records. This indicates that sampling bias
may play a significant role in this region.

Factors influencing overall, native and threatened species richness

Although our results show only small differences in the spatial patterns between observed
and estimated species richness, the factors influencing richness differed more markedly
between the spatial error models (SEMs) for observed and estimated richness, with dif-
ferences depending on the species group. The most pronounced differences were found
in the models for all and native species, where the heat sum in the growing season had
a positive effect on observed richness but a negative effect on estimated richness. This
may be explained by a shift in the hotspots of species richness from the lowlands with
a high heat sum in the growing season, in the case of observed richness, to mid-altitudes
in the case of estimated richness. Moreover, the stable area of forests was the most impor-
tant variable in the SEMs for observed richness of all and native species, whereas it was
less important for estimated richness. This may be due to the effect of sampling intensity,
as many botanically attractive and/or protected areas are located in regions with long-
term continuity of forests. For threatened species, the effects of variables were very simi-
lar for both observed and estimated richness, with the most important variables being the
same. These findings suggest that the species richness of threatened species may be less
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sensitive to sampling bias. However, this may partly reflect the exclusion of a relatively
large number of grid cells with a low number of records, which could reduce the influ-
ence of sampling bias in the models for threatened species. Variables that show similar
effects in both types of SEMs can be considered to have a robust influence on species
richness, whereas caution is needed when interpreting the effects of other variables, as
these may be biased by sampling intensity.

Climate variables are often considered fundamental for explaining variation in species
richness at the regional scale (Bhattarai 2018). In our study, the climate moisture index,
expressing the difference between mean annual precipitation and potential evapotrans-
piration (Hogg 1997), was the most important climate variable, showing a negative rela-
tionship with the observed and estimated species richness of all, native and threatened
(Red List) species. This means that grid cells in drier lowlands harbour higher species
richness of these groups than grid cells at higher elevations. This result contrasts with the
general expectation that precipitation has a positive effect on plant richness (e.g. Adler &
Levine 2007, Engemann et al. 2015), which typically applies to regions with a high
energy supply where water is a limiting factor. This suggests that water is not yet a limit-
ing factor for plants in the Czech lowlands, although this may change in the future due to
climate warming (Konapala et al. 2020). The negative relationship identified in our study
may, at least partly, be linked to other factors associated with higher precipitation in the
Czech Republic, such as low temperatures, short growing season, and acidic soils with
nutrient deficiencies in the mountains. It could also be related to the high proportion of
species in the Czech flora that are adapted to average or lower soil moisture (Chytrý et al.
2018). Another crucial environmental variable with a robust positive effect on the rich-
ness of all, native and threatened species was the presence of carbonate bedrock, on
which relatively base-rich soils usually develop, characterized by high base saturation,
high pH, and low C:N ratio (Oades 1988). According to Chytrý et al. (2003) and Ewald
(2003), the higher plant richness on carbonate bedrocks can be attributed to the larger
species pool of plants that are historically adapted to base-rich or calcareous soils in the
central-European flora. This is likely due to the disproportionately higher extinction of
acidophilous species during the Pleistocene, when habitats with acidic soils were rare.
Another reason for the lower plant richness on highly acidic soils is the lower availability
of nutrients for plants. In addition, the mobility of potentially toxic elements such as alu-
minium, manganese, cadmium, zinc, and nickel increases in such soils, and the activity of
nitrogen-fixing microbes is slowed down (Bian et al. 2013, Plaster 2013).

While it is commonly assumed that an increase in human population density is a threat
to biodiversity, our study found that human population density has a robust positive effect
on the richness of all, native and threatened (Red List) species. According to a review by
Luck (2007), the positive relationship is generally found at broader spatial scales, and
there are various explanations for this relationship. Several studies suggested that both
high human population density and high plant richness tend to occur in regions with high
productivity and suitable conditions for settlement (Kühn et al. 2004, Evans & Gaston
2005). This is also true for the Czech Republic, where highly productive regions, such as
the warm lowlands and uplands, are densely populated and harbour the highest numbers
of plant species. Urbanized ecosystems also provide a more diverse mosaic of habitats
and microenvironments supporting high plant richness (Lososová et al. 2024). Moreover,
many threatened species are associated with habitats that were historically maintained by
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traditional management (e.g. pasture grazing, grass cutting, and forest coppicing) in low-
land and mid-altitude areas, where human population density is higher compared to
mountainous regions (Douda et al. 2016).

Among the variables representing the historical development of the landscape, long-
term forest continuity, expressed here as forest area that has not changed since the 1840s,
proved to be the most important explanatory variable for both the observed and estimated
richness of threatened species. This can be primarily attributed to the dispersal limitation
of forest plant specialists, especially perennials with heavy seeds, geophytes, mycotrophs
and myrmecochorous species (Ehrlen & Eriksson 2000, Hérault & Honnay 2005). In
contrast, recently established forest plantations have different soil properties and host
limited number of generalists, while more demanding and characteristic species are miss-
ing (Slezák & Axmanová 2016, Bergčs et al. 2017, Yang et al. 2021).

Factors influencing the naturalized alien species richness

The SEMs for observed and estimated richness of naturalized alien species differed most
notably in the effects of historical variables. While all of these variables were significant
in the models for observed richness, they were insignificant in the models for estimated
richness. This can be supported by the study of McDonald et al. (2008), who also indi-
cated that past land cover had no causal relationship with alien species richness. We
found that human population density had a robust positive effect on the richness of natu-
ralized alien species. This finding is in line with previous studies, such as Spear et al.
(2013), Dimitrakopoulos et al. (2017), and Szymura et al. (2018). Areas with high human
population density often experience increased introduction of alien species through
human activities, further facilitated by favourable habitat conditions provided by human
settlements, which promote the naturalization of alien species (McKinney 2006).

Among the environmental variables, the heat sum in the growing season emerged as
the crucial driver of both observed and estimated naturalized alien species richness,
exhibiting a positive effect. The higher richness of naturalized alien species in areas with
a higher heat sum during the growing season is attributed to the fact that, in central
Europe, most naturalized alien species originate from warmer climatic regions (Pyšek et
al. 2022). Therefore, these species may be better adapted to a limited water supply and
high temperatures, giving them a competitive advantage over native species in warmer
and drier climates (Pyšek 1998). Moreover, in regions with a lower heat sum in the grow-
ing season, the reduced richness of naturalized alien species may be due to a shorter his-
tory of human colonization compared to the dry and warm lowlands. These lowland areas
have experienced greater and longer propagule pressure, at least since the Neolithic,
along with a higher frequency of anthropogenic disturbances (Pyšek et al. 2005). Conse-
quently, naturalized alien species had only a limited time to establish themselves in
regions with colder climates.

Specific characteristics of the Czech Republic: effect of spatial resolution and data coverage

The significance of factors influencing plant species richness can vary depending on the
spatial extent and resolution of the study (Stein et al. 2014). Our findings indicate that
plant species richness in the Czech Republic is influenced by both historical landscape
development and current landscape structure. However, variation partitioning revealed
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that environmental variables played the most important role in explaining species rich-
ness across all selected groups of variables. This can be attributed to the spatial scale and
resolution of our study, which is consistent with the conclusions of Pearson & Dawson
(2003) for similar spatial scales and resolutions.

Unlike countries with sparse data coverage or regions lacking species records, the
Czech Republic benefits from comprehensive data coverage and a long tradition of flora
recording. This ensures that areas with fewer records generally correspond to areas of
lower species richness, and vice versa (Danihelka et al. 2017). However, sampling bias
also plays a significant role in the Czech Republic, mostly evident in the differences in
effects of variables between SEMs for observed and estimated richness, as well as in the
effect of the number of records tested in SEMs for observed richness, which emerged as
the most important predictor across all selected species groups. This highlights the need
for careful consideration of uneven sampling intensity in the database data, particularly
when using absolute species counts.

Although rarefaction was applied as the primary method because it most effectively
reduced the effect of uneven sampling intensity and produced the most contrasting results
compared to observed richness, we are aware that it is not always the best method and
may not completely eliminate sampling bias. It has several disadvantages, such as
a reduction in the variation of richness between grid cells due to the selection of a thresh-
old corresponding to the lowest number of records in the grid cell, and the potential loss
of cells with a low number of records. Despite these limitations, we believe that using rar-
efaction for estimating species richness unaffected by sampling intensity remains a valu-
able approach and can help gain a better understanding of the factors influencing species
richness across different groups of species.

Conclusions

Our results emphasize that rarefaction can be an effective approach for reducing the
effect of uneven sampling intensity, which may otherwise distort species richness pat-
terns and influence the relative importance of variables in models. By comparing models
for observed and estimated richness, rarefaction can help identify variables with a robust,
unbiased effect on plant richness. However, rarefaction also has limitations, highlighting
the need for ongoing efforts to develop more precise and reliable methods for estimating
species richness in order to further refine our understanding of biodiversity patterns and
the factors driving them.

This study also underlines the importance of integrating variables that represent cur-
rent environmental conditions, as well as current and historical landscape structures, as
key drivers of plant species richness at regional and national scales. Current environmen-
tal conditions, such as climate moisture, carbonate bedrock, and heat sum in the growing
season, strongly influenced species richness, while historical landscape development,
particularly long-term forest continuity, played an important role in the species richness of
native and threatened species. For naturalized alien species, human population density was
essential. To further advance our understanding and conservation efforts, it is important
to interpret and digitize historical maps, enhance the spatial resolution and accuracy of
environmental variables, and improve the quality of unbiased species records. These
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approaches will help identify and protect biodiversity hotspots and develop effective
strategies for mitigating the impacts of environmental change in our rapidly changing
world.
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Prostorové rozmístění druhového bohatství české flóry: vliv intenzity sběru dat,
přírodních podmínek a historie krajiny

Pro ochranu biodiverzity je klíčová znalost jejího prostorového rozmístění a faktorů ovlivňujících rozdíly
v druhovém bohatství mezi jednotlivými regiony. S využitím databáze Pladias, která obsahuje údaje o flóře
a vegetaci České republiky, jsme zmapovali druhovou bohatost cévnatých rostlin v celé zemi a zkoumali, jak ji
ovlivňují současné podmínky prostředí, struktura krajiny a její historický vývoj. Abychom zohlednili vliv ne-
rovnoměrného sběru dat, použili jsme pět různých metod, které odhadly počet druhů v kvadrantech síťového
mapování. Pouze metoda rarefakce poskytla odhad nezávislý na intenzitě sběru dat. Pomocí modelů prostorové
chyby (spatial error models) a rozkladu variance jsme zkoumali vliv výše uvedených faktorů na distribuci pozorova-
né a odhadované druhové bohatosti. Potvrdili jsme, že druhová bohatost rostlin v ČR je ovlivněna především sou-
časnými podmínkami prostředí. Pro diverzitu všech, původních i ohrožených druhů byly nejdůležitějšími fak-
tory podíl karbonátových hornin v podloží a index klimatické vlhkosti. Pro zdomácnělé nepůvodní druhy byla
klíčová suma teplot vzduchu během vegetačního období. Historický vývoj krajiny, zejména dlouhodobá konti-
nuita lesů a trávníků, pozitivně ovlivnil především počet ohrožených druhů, ale vliv byl průkazný i na počet
všech a původních druhů. Hustota zalidnění měla pozitivní vliv na celkový počet druhů, a to původních, ohro-
žených i zdomácnělých. Naše studie ukazuje, že vliv nerovnoměrného sběru floristických dat je poměrně vý-
znamný a může zkreslovat vliv určitých faktorů prostředí jako např. sumy teplot ve vegetační sezóně. Je proto
zásadní jej zohlednit, aby bylo možné korektně posoudit význam jednotlivých faktorů ovlivňujících druhovou
bohatost. Ty zahrnují nejen současné environmentální podmínky, strukturu krajiny a vliv člověka, ale také její
historický vývoj, jenž je v podobných studiích často opomíjen kvůli špatné dostupnosti a kvalitě dat.
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