On the origin of *Pyrus*×georgica KUTH. (pro sp.)

O původu *Pyrus*×georgica KUTH. (pro sp.)

Jiří Dostálek

DOSTÁLEK J. (1983): On the origin of $Pyrus \times georgica$ KUTH. (pro sp.). – Preslia, Praha, 55: 299–314.

A proof is given that $Pyrus \times georgica$ KUTH. (pro sp.) is of hybrid origin. It arose from a hybridization of P. caucasica FED. in GROSSG. with P. salicifolia PALL. P. georgica KUTH. var. glabra KUTH. (P. demetrii KUTH.) is only a nothomorph differing in reduced indumentum of leaves: $P \times georgica$ KUTH. nm. glabra KUTH. (pro var.). A great number of plants with intermediary characters of the hybrid P. salicifolia PALL. $\times P$. syriaca BOISS. grew up from the seeds of P. salicifolia PALL. imported from Armenia. Hybridization appears to be one of the most important factors influencing the diversity of Transcaucasian pear-trees. Some of the other described species from Transcaucasia may also be only nothomorphs.

Botanický ústav ČSAV, 252 43 Průhonice, Czechoslovakia.

S. KUTHATHELADZE (1939) concluded that the *Pyrus* species occurring in Georgia (U.S.S.R.) and described by Caucasian authors mostly as *P. elaeagrifolia* PALL. or *P. salicifolia* PALL. is a new species and named it *P. georgica* KUTH. In the history of the problem she mentioned that SosNov-SKIJ had foreseen the existence of the species already in 1922-23.

According to KUTHATHELADZE (1939), P. georgica is closely related to P. salicifolia and P. elaeagrifolia. It frequently grows together with P. salicifolia; mostly as individual trees, but also in smaller or larger groups.

Back in 1966 I brought from Transcaucasia some seeds of P. caucasica FED. in GROSSG. From one of them a plant identical with P. georgica grew up. My interpretation was that one of the ovules was pollinated with a pollen grain from P. salicifolia. This paper gives a proof that P. georgica is a hybrid of P. caucasica with P. salicifolia.

MATERIALS AND METHODS

A hybrid identical with P. georgica was grown in the Botanical Garden of the Botanical Institute of the Czechoslovak Academy of Sciences at Průhonice from seeds of P. caucasica imported from Transcaucasia. The hybrid was compared with the description of P. georgica by KUTHATHELADZE (1939) and with a specimen brought from the Botanical Garden in Tbilisi. Other specimens included in the study were:

- 1. Syntype *P. georgica* from the herbarium of the Botanical Institute in Tbilisi (TBI): Herb. caucasium, Georgia (U.S.S.R.), near Tbilisi, on a bare slope Msaldidi, July 3, 1960, leg. KECCHO-VELI, det. KUTHATHELADZE. The specimen was designated as syntype by KUTHATHELADZE.
- 2. Syntype P. demetrii KUTH. [P. georgica var. glabra KUTH.] from TBI: Herb. caucasicum, Georgia (U.S.S.R.), district of Sagaredzho, near villages Chaschmi and Tsitlobi, Sept. 22, 1939, leg. et det. KUTHATHELADZE. The specimen was also designated as syntype by KUTHA-THELADZE.
- 3. Six specimens of *P. georgica* deposited in the herbarium of the Institute of Dendrology in Kórnik (KOR); one of the specimens comes from a classical locality.

In 1971 I carried out a reciprocal hybridization of P. pyraster BURGSD. with P. salicifolia PALL. at Průhonice. Later I used the results for the verification of P. georgica's origin. The idea was based on the knowledge that P. caucasica and P. pyraster are closely related to each other. Soviet and Polish authors did not in most instances accept P. pyraster. They consider it to be part of P. communis L. s.l. in the original LINNEAN conception. FEDOROV (GROSSGEJM 1952) separated P. caucasica from P. communis in a similar way in which P. pyraster was separated from it. SINSKAJA (1969) critically commented on the separation and BROWICZ (1972) also considered P. caucasica to be only a subspecies of P. communis. In a broad sense it seems possible to consider P. pyraster and P. caucasica to be part of P. communis L. s.l.

In his Latin description FEDOROV (GROSSGEJM 1952, p. 422) notes that P. caucasica differs from P. communis (in our conception P. pyraster, as far as wild plants are concerned) mainly by entire leaves and geographic area. According to the Russian description (GROSSGEIM 1952, p. 21), however, the leaves are entire only on brachyblasts while on "autoblasts" they are sharply dentate. The specimens I brought from the Small Caucasus had some leaves with serrulate apexes even on the brachyblasts. On some other specimens, mostly at their lamina apexes, I also found indications of serrateness, serrulateness or crenato-serrateness. The character is then potentially contained in the genome of P. caucasica. It is very conspicuous on P. pyraster, and yet, some of its populations, for example the population from Krupinská Vrchovina in Slovakia (N.E. of Luboreč village, N.W. to S.E. of the elevation point Haj), had 8 percent of trees with entire leaves from brachyblasts. In Rumania (N. Dobrudja, W. of Somova community), there were as much as 39 percent of them. The leaves of P. caucasica are essentially entire; serrateness is developed on almost a negligible scale or in a rudimental form. This is in the essence the only morphological difference emphasized by FEDOROV (GROSSGEJM 1952). BROWICZ (1972) also considers the indumentum of the lamina margin to be a diacritical character in which P. communis subsp. communis (in our conception P. pyraster) differs from P. caucasica (in his conception P. communis subsp. caucasica (FED.) BROWICZ). It is, of course, possible to find leaves with an indumentum on the lamina margins of P. pyraster as well. However, the indumentum is by far not as striking and persistent as that on P. caucasica. For example, at the locality cited earlier (Krupinská Vrchovina in Slovakia) there were 28 percent of plants with an indumentum of a various degree on the lamina margins, ranging from solitary hairs on the apex margins of some laminas to hairiness of margins on others. The Rumanian population mentioned earlier had only 3 percent of plants with solitary hairs on lamina margins; the rest was glabrate. Even among P. caucasica plants, of course, individuals can be found with a less intensive indumentum on lamina margins. On the whole, however, this character is marked.

These data are not to prove that P. caucasica and P. pyraster are morphologically identical. However, the differences examined so far are of such a nature that they do not seem to be an obstacle in testing the presumption that P. georgica is of hybrid and not mutation origin in which P. pyraster would be used as one of the parents instead of P. caucasica. Experimental work with woody plants is slow and the hybrids P. pyraster × salicifolia were available.

The leaves used for evaluation and drawings were taken from brachyblasts.

RESULTS AND DISCUSSION

P. georgica does not deviate from P. caucasica \times salicifolia in the leaf length (Table 1). Neither does it from P. pyraster \times salicifolia (Table 3) if we take into consideration the variability of individuals and, in particular, if we consider that the average length of leaves on P. georgica specimens from TBI and KOR varies from 60.0 to 87.9 mm. Similar is the case of the leaf width (on the specimens from TBI and KOR from 16.4 to 22.3 mm) and the length of the petiole (on the specimens from TBI and KOR from 15.5 to 29.9 mm). The spontaneous hybrid P. caucasica \times salicifolia as well as the experimental hybrids P. pyraster \times salicifolia have these quantitative characters within the variability of P. georgica. In the case of the syntype from TBI and six specimens from KOR, one of which comes from a classical locality, it was not possible without causing some damage to obtain quantitative data from such a number of measurements that would permit a comparison with the hybrids where n = 100. For this reason they are mentioned here only in general terms, but they are not shown in the tables. However, they do have some value for orientation.

Character		$P.\times$ georgica according to the description by KUTHATHELADZE (19)	P.×georgica from the Botanical Garden in 39) Tbilisi	$\begin{array}{c} P.\ caucasica \times salici-\\folia \end{array}$
Leaf length	x min.	[75]* 50	82.92 65	76.14 57
in mm	max.	100	105	105
Leaf width in mm	$\overline{\mathbf{x}}$ min. max.	$\begin{array}{c} 20.96\\ 15\\ 30 \end{array}$	$\begin{array}{c} 22.08\\ 19\\ 24 \end{array}$	$18.64 \\ 14 \\ 23$
Petiole length in mm	x min. max.	$\begin{array}{c} 26.00\\ 15\\ 45\end{array}$	$\begin{array}{c} 27.46\\ 19\\ 38\end{array}$	$\begin{array}{c} 24.52\\ 15\\ 35\end{array}$
Lamina length/w	idth index	[2.34]*	2.51	2.77
Lamina shape		broadly elliptic- lanceolate	narrowly elliptic to elliptic	narrowly elliptic and transitional shapes, sporadically up to elliptic
Lamina apex		elongated into a sharp spiko	mostly acute, but also transitional shapes approaching acuminate ness	long acuminate to acute
Lamina	base	not described, accord- ing to the drawing mostly cuneate	mostly cuneate, but also angustate	cuneate to convexly attenuate
Lamina i	margin	usually entire, infre- quently slightly serrate	entire, here and there minutely crenato- serrate	serrulate, lower part entire
Indu- mentum	Lamina adaxial surface	indumentum almost entirely disappears or is very uneven	hairy to densely hairy (magn. glass)	hairy to densely hairy (magn. glass)
	Lamina abaxial surface	appressedly tomentose	tomentose	subtomentose
	margin		hairy to densely hairy, here and there glabrescent	hairy, glabrescent
	Petiole	frequently more or less ara chnoid	tomentose to sub- tomentose	subtomentose, glabrescent
Deflectio angle of vein in degrees		$\begin{array}{c} 49.66\\ 40\\ 60\end{array}$	$\begin{array}{c} 34.31\\ 28\\ 42\end{array}$	37.20 33 44

Table 1. — Characters of the leaf of $Pyrus \times georgica$ and the spontaneous hybrid $P.\ caucasica \times salicifolia$

* KUTHATHELADZE gives only the minimum and maximum values. The average value was calculated from these values and after discounting the length of the petiole used to determine the length/width index of the lamina.

Character	P.×georgica according to the description by KUTHATHELADZE (1939)	$P.\ caucasica imes salicifolia$			
No. flowers in inflorescence	4-10	7-9*			
Peduncle: length in mm indumentum	15 - 35 dense indumentum	13-25 subtomentose			
Calyx teeth: number shape indumentum	5 triangular, acute, reflexed outer surface greyish-tomentose, yellow indumentum on inner surface	5 triangular, acute, reflexed outer surface greyish-tomentose, yellowish to rusty indumentum on inner surface			
Petal shape	obovate to broadly elliptic, apex rounded, at base forming a small elaw	mostly narrowly rotund, spor- adically also broadly obovate, apex rounded, at base forming a small claw			
Number of stamens	15 - 20	16 - 21			
Styles: number indumentum	3-5 indumentum at base	4-5 indumentum at base			
Indumentum of hypanthium	densely tomentose	tomentose			
Bracts: shape indumentum	subulate orange	subulate rusty, white on margins			

Table 2. – Characters of the flower of Pyrus \times georgica and the spontaneous hybrid P. caucasica \times salicifolia

* Some flowers withered, but included in the total.

Neither are there any substantial differences between P. georgica and the hybrids with regard to the length/width index of the lamina, which is to some extent an indicator of the leaf shape. KUTHATHELADZE (1939) did not mention it directly in her description and, therefore, I calculated it for Table 1 from basic data; it is 2.3. Only when she compared P. georgica with P. salicifolia and with P. elaeagrifolia KUTHATHELADZE stated (p. 19) that the lamina length of P. georgica was 3.5 times greater than its width. This is a certain discrepancy. However, on a drawing from her work the index of the laminas amounts to 3.1 and the specimen from KOR which comes from a classical locality has exactly the same value. The index of the syntype from TBI is 2.7. The whole range of average values determined on the specimens from KOR is between 2.6 and 3.7. It can be, therefore, concluded that the lamina length/width index of P. georgica is variable according to individuals and the indexes of the hybrids do not exceed limits of this variability (Table 1 and 3).

The variability of quantitative characters considered from the viewpoint of mathematical statistics is of such a nature that even the differences between the characters of the hybrids derived from one combination are in most cases highly significant, as demonstrated on *P. pyraster*×*salicifolia* (Table 5). A similar situation exists in the case of the differences between *P. caucasica*×*salicifolia* and *P. pyraster*×*salicifolia*. Both the differences between the quantitative characters of individual plants derived from the hybridization of *P. pyraster* with *P. salicifolia* and the differences between *P. caucasica*×*salicifolia* and *P. pyraster*×*salicifolia* are of a similar character.

The deflection angle of the lamina second vein is variable. It was almost 50° on *P. georgica* (KUTHATHELADZE 1939). A similar angle was also found on the hybrid *P. pyraster*×salicifolia A2. The angle on *P. georgica* from the Botanical Garden in Tbilisi was 34.3°, on the syntype 37.0° and on the specimens from KOR it varied from 29.0 to 38.0°. On *P. caucasica*×salicifolia it was almost the same as on the syntype (37.2°) and on the hybrids *P. pyraster*×salicifolia (except A2) it varied between 33.8 and 35.2°.

The laminas of P. georgica are, according to the description by KUTHATHE-LADZE (1939), broadly elliptic-lanceolate. On a drawing from her work they are narrowly elliptic. That she described the shape as broadly elliptic was probably caused by a different idea about the length/width ratio of this shape. A tendency toward lanceolateness or lanceolate leaves do not occur, according to the specimens I examined, so frequently. P. georgica from the Botanical Garden in Tbilisi has laminas narrowly elliptic (length/width ratio 3:1) to elliptic (2:1). The specimens from KOR have laminas more or less narrowly elliptic or transitional up to almost elliptic. The laminas of the syntype from TBI are also narrowly elliptic to elliptic, although sporadically they can be narrowly obovate (2:1) or even have a tendency toward lanceolateness (3:1). Also all the hybrids have narrowly elliptic, transitional or truly elliptic laminas. Only on the hybrid P. pyraster \times salicifolia A2 the elliptic shape prevails over the narrowly elliptic one, as it is also indicated by the length/width index. Thus, there is no real difference between P. georgica and P. caucasica \times salicifolia.

The lamina apex on P. georgica (including the specimens from KOR and TBI) as well as on the hybrids is acute or acuminate. This observation is in agreement with the formulation by KUTHATHELADZE (Table 1).

The lamina base was not described by KUTHATHELADZE (1939). According to her drawing it is mostly cuneate. On the specimens from the Botanical Garden in Tbilisi it is cuneate or angustate (as cuneate, but sides slightly convex). On the specimens from KOR the base is besides that also attenuate (straight sides slowly taper off in a very acute angle, smaller than 30°). On the syntype from TBI it is not only cuneate, but also concavely angustate (concave sides) to concavely attenuate. These shapes occur altogether also on the hybrids, so that there are not any differences here. Only on *P. pyraster* \times *salicifolia* A2, which split off with somewhat broader leaves so that the elliptic shape prevails over the narrowly elliptic one, the base is not only angustate and cuneate, but also narrowly rounded.

The lamina margin on *P. georgica* and on the spontaneous hybrid *P. caucasica* \times salicifolia is entire, a little servate or, eventually, minutely crenatoserrate. A similar situation exists among the specimens from KOR; however, in two cases the margins were entire. On the contrary, minute servalateness

				$P.\ pyraster imes salicifolia$						
Char	ractor	$\begin{array}{c} P. \ pyraster \ \mathbf{A} \\ \varphi \end{array}$	P. pyraster B ♀	A1	A2	B1	B2	P. salicifolia I		
Leaf	x	73.86	67.83	74.72	73.88	82.19	65.32	71.62		
length in mm	min. max.	55 97	54 83	57 95	$\frac{53}{106}$	65 108	51 86	50 96		
Leaf	x	26.92	28.43	17.34	19.77	21.49	16.84	10.47		
width	min.	$\frac{20.52}{22}$	28.43	12	15.77	16	13	8		
in mm	max.	31	36	$\frac{12}{22}$	24	28	24	12		
Petiole	x	42.11	31.67	29.03	29.11	26.06	17.91	9.9		
length	min.	29	23	17	16	17	10	4		
in mm	max.	61	44	43	48	38	26	17		
Length/	x	1.18	1.28	2.63	2.27	2.64	2.84	5.93		
/width	min.	0.83	1.00	2.14	1.86	2.00	2.23	4.55		
index	max.	1.38	1.86	3.38	2.67	3.63	3.77	7.40		
Lamina sł	nape	broadly ovate or ovato-rotund, sporadically narrowly to transversely rotund	broadly ovate, ovato-rotund, sporadically rotund and narrowly rotund	narrowly elliptic to almost elliptic	elliptic,tran- sitional shapes approaching narrowly elliptic	to elliptic	mainly narrowly elliptic, but also transitional shapes approach- ing elliptic			
Lamina aj	рөх	acuminate, apiculate	acuminate	transitional shapes between acute and acuminate to almost acute	acuminate to almost acute	acuminate to acute	acuminate to acute	acute, convexly acute		
Lamina base		shallowly to very shallowly cordate	rounded, constricted, sporadically very shallowly cordate	cuneate, angustate	angustate, narrowly rounded, sometimes also cuneate	cuneate, angustate	cuneate	attenuate		

Table 3. - Characters of the leaf of the experimental hybrids $Pyrus \ pyraster imes salicifolia$ and their parents

304

Character		_						
		P. pyraster A ♀	P. pyraster B	Al	A2	B1	B2	P. salicifolia 3
Lamina m	argin	entire with indi- cation of serrate- ness, apex here and there very shallowly serrate		entire	entire	very shallowly serrate, or indication of serrateness to almost entire	entire	entire
mentum a	Lamina adaxial surface		glabrate, solitary little hairs at apex of some leaves (magn. glass)	hairy (even with unaided eye)	sparsely hairy (magn. glass)	glabrate, solitary hairs, sometimes sparse hairs along lamina margin (magn. glass)		hairy, densely hairy along margin (magn. glass)
	Lamina abaxial surface	glabrate, sometimes solitary to sparse remnant hairs along midrib (magn. glass	5	tomentose	tomentose, subtomentose	subtomentose to densely hairy	subtomentose	tomentose
	Lamina margin	glabrate, or at apex remnant hairs often only solitary (powerful magn. glass)	glabrescent, solitary hairs to hairy, at base glabrate (magn. glass)	densely hairy, here and there glabrescent	hairy to solitary hairs	hairy, here and there glabrescent	hairy, here and thereglabrescent	hairy, here and thereglabrescent
	Petiole	glabrate	glabrate	tomentose to densely hairy	densely hairy	densely hairy to solitary hairs	subtomentose to sparsely hairy	densely hairy to tomentose
Deflection angle of 2 nd vein in degrees	x min. max.		53,5 45 64	$\begin{array}{c} 35.2\\ 29\\ 44 \end{array}$	50.1 41 58	$\begin{array}{c} 34.1\\ 28\\ 38\end{array}$	33.8 28 39	28.0 22 44

Table 3. - (Contd.)

The length/width ratios of less usual shapes of the lamina: broadly ovate 6 : 5, ovate-rotund 1 : 1, narrowly rotund 6 : 5, transversely rotund 5 : 6, narrowly elliptic 3 : 1, very narrowly elliptic 6 : 1. Constricted base: slightly convex sides taper off in right or obtuse angle.

305

	D						
Character	P. pyraster A ♀	P. pyraster B	Al	A2	B1	B2	P. salicifolia Š
No. flowers in inflorescence	8-10	9-13	5-8*	3 - 10	7 - 10	8-14	5-9*
Peduncle: length in mm indumentum	15-33glabrate	16-30glabrate	20-26tomentose	15-18tomentose	15-23 subtomentose	14-22tomentose	10-17 tomentose
Calyx teeth: number shape	5 triangular, acute, reflexed, long	5 triangular, acute, reflexed, longer	5 triangular, acute, reflexed, mostly short, but also longer	5-6 triangular, acute, reflexed, short to long	5 triangular, acute, reflexed, middle long	5 triangular, acute, reflexed, longer	5(-6) triangular, acute, reflexed, short
indumentum	solitary little white hairs on outer surface, inner surface rusty-tomentose	outer surface glabrate, inner surface rusty- tomentose, whitish hairs on margins	outer surface grey-tomentose, inner surface yellowish- to rusty-tomentose		outer surface grey-tomentose, inner surface also grey-tomen- tose, only here and there a little rusty	inner surface	both surfaces grey-tomentose, here and there a little rustish
Petal shape	broadly elliptic, narrowly rotund to rotund, spora- dically also broadly ovate apex rounded	or narrowly rotund to rotund, apex	broadly ovate,	rotund to narrowly rotund sporadically also rotund-ovate or broadly ovate	rotund, spora-	broadly elliptic, sporadicallyalso broadly ovate to ovate, apex rounded	to broadly
No. of stamens	20	15 - 20	19 - 25	21 - 29	16 - 20	21 - 29	20 - 26

Table 4. – Characters of the flower of the experimental hybrids $Pyrus \ pyraster imes salicifolia$ and their parents

306

Table 4. - (Contd.)

		D . D					
Character	$\begin{array}{c} P. \ pyraster \ \mathbf{A} \\ & \bigcirc \\ \end{array}$	P. pyraster B	A1	A2	B1	B2	P. salicifolia 3
Styles: number indumentum	5 sporadic indumen- tum at base	4-5 glabrate and sporadic little hairs at base	5 indumentum at base	4-5(-6) indumentum at base	4−5 indumentum at base	4-5 indumentum at base	3-5 dense indumen- tum on lower half, sometimes sparse or solitary hairs also higher
Indumentum of hypanthium	glabrate	glabrate	tomentose	tomentose	tomentose	tomentose	tomentose
Bracts: shape	subulate	subulate	subulate	subulate	subulate	subulate	subulate, some- times upper part a little broader
indumentum	rusty; sporadic white hairs on margins	rusty; white hairs on margins	rusty; white s hairs on margins	rusty; white hairs on m a rgins	rusty; white s hairs on margins	rusty; white hairs on margins	rusty; white hairs on margins

* Some flowers withered, but included in the total.

to crenato-serrateness and indications of serrateness prevail over the entireness of margins on the specimens from TBI. It is interesting that on the hybrids P. pyraster \times salicifolia the entireness markedly prevails (3 out of 4 cases), although according to the difference between P. caucasica and P. pyraster the serrateness should have been expressed more strongly. The substitution of P. pyraster for P. caucasica, therefore, did not have any effect on this character.

The lamina adaxial surface of P. georgica is hairy to densely hairy, or the indumentum is uneven and almost absent (Table 1). The lamina adaxial surface of the specimens from KOR and TBI is also hairy, densely or thinly, surface of the specimens from KOR and TBI is also hairy, densely or thinly, or, eventually, glabrescent to almost glabrate. It is also hairy to densely hairy on the spontaneous hybrid *P. caucasica* \times *salicifolia*, so that in this respect the hybrid does not deviate from *P. georgica* (Table 1). A similar indumentum can be observed on *P. pyraster* \times *salicifolia* (Table 3). The adaxial indumentum is poorly visible with an unaided eye and, therefore, it is necessary to examine it with a magnifying glass. The lamina abaxial indumentum is also the same on P. georgica, including the specimens from KOR and TBI, as on all observed hybrids. KUTHATHELADZE (1939) did not describe indumentum on lamina margins. On the specimen from the Botanical Garden in Tbilisi the margins are hairy to densely hairy, here and there glabrescent. A similar situation can be observed on the specimens from KOR (on one plant it was glabrate) and from TBI. The indumentum on the lamina margins of P. caucasica \times salicifolia is not different. We are particularly interested in this indumentum on the lamina margins of the hybrids P. py $raster \times salicifolia$, because it is, in addition to servateness, the second character in which P. caucasica differs from P. communis s.l. (in our conception P. pyraster). However, there is not any difference between P. caucasica \times salicifolia and P. pyraster \times salicifolia. Indumentum of the petiole is at the peak of the growing season already considerably changeable. KUTHATHELADZE (Table 1) described it as arachnoid. On the specimen from the Botanical Garden in Tbilisi it appeared to me as tomentose to subtomentose, on the specimens from KOR and TBI it was besides that also densely hairy, hairy, with solitary hairs, or in some cases here and there glabrate. P. caucasica \times salicifolia does not differ in indumentum of the petiole from P. georgica and the same applies to P. $pyraster \times salicifolia$.

The characters of leaves, including indumentum, were evaluated on the specimens from the peak of the growing season. Indumentum is more intensive in the spring, during the time of blossom.

Characters of the flower were available neither on P. georgica from the Botanical Garden in Tbilisi, nor on the specimens from KOR and TBI. For this reason the flower of P. caucasica \times salicifolia was compared only with the original description of the flower of P. georgica. In addition, data on P. pyraster \times salicifolia were informatively used.

The number of flowers in the inflorescence has a somewhat narrower range on *P. caucasica* \times *salicifolia* than it does according to the original description of *P. georgica*, but it does not much deviate from it in the average number. It is obvious from Table 4 that the number of flowers in the inflorescence and its range are to a certain extent properties of individual plants and, therefore, variable. The peduncle of *P. georgica* occurs also longer, namely by 10 mm. However, this is less important, because the peduncle is variable likewise

Hybrid			Leaf length			Leaf width			Petiole length			Lamina length/width index					
Serial no.	Combination	2	3	4	5	2	3	4	5	2	3	4	5	2	3	4	5
1	$P.\ caucasica imes$																
2	salicifolia P. pyraster A1			++	+++	++	$^{++}_{++}$	+++	++	+ +	++	++	+++	++	$^{++}_{++}$	++	+
3	$\times salici$ - A2			++	++			++	++			++	++			++	+
4	folia B1				++				++				++				+
5	B2																

Table 5. - Significance of the differences among the quantitative characters of hybrids

n = 100.

Evaluated by t - test. Numbers in column headings refer to serial numbers at left.

later the whole fruit is. The indumentum of the peduncle, which is less variable and, therefore, a more important character, is the same on P. georgica as on all the hybrids. A certain difference is only in the formulation used in the original description. The number of calva teeth, their shape and indumentum are the same. On the hybrids the indumentum of the inner

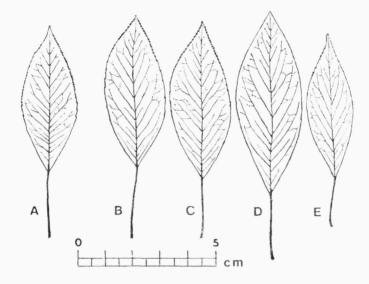


Fig. 1. — Leaves from the brachyblasts of $Pyrus \times georgica$: A — a leaf of a plant grown from P caucasica pollinated with pollen of P. salicifolia. B to E — leaves from various trees of $Pyrus \times georgica$.

surface of these teeth was not only yellow, but even rusty. On one hybrid $P.\ pyraster \times salicifolia$ (A2) the teeth were grey on the inner surface, that is, of a similar colour as on the outer surface. The colour of petals was white in all cases and the differences in their shape were, with respect to the variability of individuals, small; besides, we do not exactly know what length//width ratio KUTHATHELADZE recognizes. On the hybrids $P.\ pyraster \times salicifolia$ ovate shapes occur instead of the obvate ones. However, the obvate shape is also contained in the genome of $P.\ pyraster$ B (Table 4). It is, therefore, possible to presume that the hybrids have it, too, but it would be necessary to evaluate more individuals to find it. The number of stamens is on $P.\ georgica$ as well as on $P.\ caucasica \times salicifolia$ the number can be even higher than on the parent plants (Table 4). However, it is not the same even on only two $P.\ pyraster$ (A, B) individuals. There are 3-5 styles on $P.\ georgica$ and 4-5 on $P.\ caucasica \times salicifolia$ has 3-5 of them (Table 4); it is, therefore, understandable that individuals having flowers with three styles can occur among $P.\ georgica$ plants, too. The styles have an indumentum at the base not only on $P.\ georgica$, but also on all observed hybrids.

On the bases of the data presented here it is possible to conclude that P. georgica is of hybrid origin and that it arose from the hybridization of P. cau-

casica with *P. salicifolia*. *P. georgica* var. glabra KUTH. (*P. demetrii* KUTH.) is only its nothomorph, conspicuous by a considerably reduced indumentum of leaves. Without a magnifying glass it appears almost glabrate. The taxa should be, therefore, designated as follows:

 $P. \times georgica$ KUTH. (Notul. Syst. Geogr. Inst. Bot. Thbilissiensis 8 : 13, 1939) (pro sp.) (P. caucasica FED. in GROSSG. $\times P.$ salicifolia PALL.)

1. nm. georgica

Leaf indumentum: The lamina adaxial surface more or less hairy, or glabrescent and on some leaves up to almost glabrate. The abaxial surface

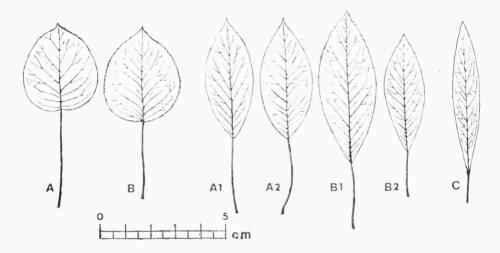


Fig. 2. – Pyrus pyraster (A, B), P. salicifolia (C), in the centre their hybrids: P. pyraster $A \times salicifolia$ (A 1, A 2) and P. pyraster $B \times salicifolia$ (B 1, B 2).

tomentose to subtomentose. Margin hairy to densely hairy, here and there glabrescent, sporadically almost glabrate. The petiole subtomentose to tomentose, hairy to densely hairy, on some leaves only solitary hairs or here and there up to glabrate.

2. nm. glabra KUTH. (Notul. Syst. Geogr. Inst. Bot. Theilissiensis 8:16, 1939) (pro var.).

Syn.: P. demetrii KUTH. Notul. Syst. Geogr. Inst. Bot. Thbilissiensis 13: 25, 1947.

Leaf indumentum: The lamina adaxial surface glabrate, sometimes sparsely hairy at apex (magnifying glass). The abaxial surface glabrate, hairs only near the midrib (magnif. glass). Margin hairy, sparsely hairy, with solitary hairs or glabrate. The petiole hairy, with solitary hairs (magnif. glass) or glabrate.

Note: These two nothomorphs do not differ in other characters (including the quantitative ones). The spines do not have a great diacritical value. They are peculiar to juvenile plants, but later their number and properties change.

Combination of parental plants	No. of pollinated flowers	Percentage of developed fruits	Average no. of seeds in fruits	Percentage of seed germination	Percentage of one-year- old plants from the total no. of germi- nated ones
$P. \ pyraster \ \mathbf{A} \times P. \ salicifolia$	100	*	7.5	91.7	71.0
$P. pyraster \ \mathbf{B} \times P. \ salicifolia$	100	22	7.6	82.4	68.1
$P. \ salicifolia \times P. \ pyraster \ A$	100	35	3.3	6.3	40.0**
$P. \ salicifolia \times P. \ pyraster \ B$	100	38	4.8	1.8	66.7**

Table 6. - Results of the hybridization of Pyrus pyraster with P. salicifolia

* Evaluation not reliable since flowers were partly damaged by frost.

** Owing to poor germination of seeds the percentage was calculated from only a small number of plants.

The hybrids of P. pyraster with P. salicifolia were also used to verify that $P. \times georgica$ KUTH. (pro sp.) was not a result of mutation. Altogether 92 of them were grown from the hybridization which took place in 1971. Nowadays, there are 58 of them in the Botanical Garden of the Botanical Institute of the Czechoslovak Academy of Sciences at Průhonice. The results of the reciprocal hybridization of P. pyraster with P. salicifolia are shown in Table 6. The percentage of fruits obtained from this hybridization was good (up to 38 percent). The average number of seeds was lower from P. salicifolia pollinated with pollen from P. pyraster than it was from the reciprocal combination (up to 7.6 seeds). Germination of seeds from P. salicifolia pollinated with P. pyraster was rather bad, whereas it was very good (up to 91.7 percent) in the case of the reciprocal combination. It is interesting that the morphological difference between P. $pyraster \times salicifolia$ and P. $caucasica \times salicifolia$ did not become evident. This is particularly true about the entireness and in-dumentum of lamina margins, in which P. caucasica should differ from P. pyraster. It was only P. pyraster \times salicifolia A2 plant that split off according to the length/width index with broader laminas, which is also evident on the shape of the base of some leaves.

I brought from Transcaucasia the seeds of not only P. caucasica, but also P. salicifolia. In only one case the hybrid P. caucasica \times salicifolia arose from the seeds of P. caucasica. In no case a plant like that arose from the seeds of various plants of P. salicifolia, however, a surprising number of plants with the characters of P. syriaca BOISS. grew up from them. They are the hybrids of P. salicifolia with P. syriaca. The seeds came from Armenia.

 $P.\ caucasica$ is mesophilous, whereas $P.\ salicifolia$ xerophilous. They should not, therefore, occur in the same habitat and should not have any opportunity for mutual pollination. However, the fact is that I personally observed the rise of the hybrid from the seeds of $P.\ caucasica$. The pollination then must have taken place. We must realize that fruits of wild $P.\ caucasica$ are utilized by local people and up to the present time sold on markets in Transcaucasia. Besides, there are some cultivated and semi-cultivated forms of P. caucasica which may be grown in other places than in their original habitats. However, the hybridization of P. caucasica with P. salicifolia would be explicable even without humen interference, since, according to RUBZOV (1939) the areas of P. communis (in more recent conception P. caucasica, as far as wild plants are concerned) and P. salicifolia can interlock. Thus the distances between the potential parental plants can be overcome by insects capable of pollination.

The time of flowering was observed on plants growing on one plot (Botanical Garden of the Botanical Institute at Průhonice), so that microclimatic differences due to different habitats were absent. Both species blossom at the same time, so that there is no obstacle to pollination here, either.

Pears easily cross among themselves. It appears that in Transcaucasia there are only a few basic species, the other taxa being mainly their hybrids or mutants. If we omit the border regions, the main species could be P. caucasica, P. salicifolia and P. syriaca. It is possible that various nothomorphs from hybridization of two species were described as true species. Also, more nothomorphs than just $P. \times georgica$ nm. glabra derived from the hybridization of P. caucasica with P. salicifolia may have been described as species. Even P. sachokiana KUTH. or P. takhtadzhianii FED., for example, could be suspicious. $P \times qeorgica$ differs from P. sachokiana in the shape of the leaf, however, there is no hiatus between them. Some of the specimens are intermediary and only incline toward either $P \times georgica$ or P, sachokiana. On the syntype $P. \times georgica$ that I studied in detail there were also some leaves peculiar to P. sachokiana. A similar shape occurred neither on the spontaneous hybrid P. caucasica \times salicifolia nor on the experimental hybrids P. pyraster × salicifolia. P. takhtadzhianii may have originated from the hybridization of the cultivated form of P. caucasica or even P. communis with P. salicifolia.

The distribution of some species in Transcaucasia is surprisingly small; they are almost without an adequate area. That may also indicate their lower taxonomic value.

Solving the problem of Transcaucasian pears without genetic analysis is difficult. Such analysis, however, would be very demanding and slow. That is why I paid so much attention to the hybrid that split off from *P. caucasica*. And to prove that $P. \times georgica$ did not originate from mutation and that hybridization has had considerable importance in the development of Transcaucasian pears, I demonstrated the rise of the hybrids from the hybridization in which I used *P. pyraster* instead of closely related *P. caucasica*.

SUMMARY

Pyrus × georgica KUTH. (pro sp.) arose from the hybridization of P. caucasica FED. in GROSSG. with P. salicifolia PALL. Its hybrid origin was recognized on a plant which grew up from seeds of P. caucasica FED. in GROSSG. Because of long term nature of genetic work with woody plants, the hybrids of P. salicifolia PALL. with P. pyraster BURGSD., which is closely related to P. caucasica FED. in GROSSG., were used to prove that hybridization and not mutation gave rise to $P. \times$ georgica KUTH. Hybridization of ecologically different species such as the mesophilous P. caucasica FED. in GROSSG. and xerophilous P. salicifolia PALL. is possible when their areas occur at distances that can be overcome by insects capable of pollination. Both P. caucasica FED. in GROSSG. and P. salicifolia PALL. bloom at the same time.

P. georgica KUTH. var. glabra KUTH. (P. demetrii KUTH.) is only a nothomorph, conspicuous by reduced indumentum of leaves: $P \times georgica$ KUTH. nm. glabra KUTH. (pro var.). P. sacho-

kiana KUTH. and P. takhtadzhianii FED. may also be nothomorphs of $P. \times georgica$ KUTH., however, more evidence is needed.

Among the progenies of P. salicifolia grown from seeds imported from Armenia a great number of plants had intermediary characters of the hybrid P. salicifolia PALL $\times P$. syriaca BOISS.

Hybridization appears to have had a strong influence on the diversity of Transcaucasian pear-trees. With the exception of border regions, the main participants in it were *P. caucasica* FED. in GROSSG., *P. salicifolia* PALL. and *P. syriaca* BORS. Some of the other described species from Transcaucasia may also be only nothomorphs which originated from hybridization at various levels. Mutations may have playod a role in the origin of some taxa. However, it is difficult to solve the problem of Transcaucasian pears without genetic analysis.

SOUHRN

 $Pyrus \times georgica$ KUTH. (pro sp.) je hybridního původu a vznikl křížením P. caucasica FED. in GROSSG. s P. salicifolia PALL. Jeho hybridní původ byl zjištěn podle rostliny vyštěpené ze semen P. caucasica FED. in GROSSG. Pro dlouhodobost genetické práce s dřevinami byli k ověření, že nejde o mutaci, ale o křížení, použiti i kříženci P. salicifolia PALL. s P. pyraster BURGSD., který je P. caucasica FED. in GROSSG. velice blízký. Vysvětlit křížení ekologicky odlišných druhů jako je mezofilní P. caucasica FED. in GROSSG. a xerofilní P. salicifolia PALL., lze přiblížením se jejich areálů na takovou vzdálenost, kterou je hmyz schopen překonat. P. caucasica FED. in GROSSG. i P. salicifolia PALL. kvetou ve stejnou dobu.

P. georgica KUTH. var. glabra KUTH. (P. demetrii KUTH.) je jen notomorfou, která je nápadná redukovaným oděním listů: P.×georgica KUTH. nm. glabra KUTH. (pro var.). Jako další notomorfy přicházejí v úvahu i P. sachokiana KUTH. a P. takhtadzhianii FED. K ověření tohoto předpokladu bude třeba získat více informací.

Mezi potomstvy *P. salicifolia* PALL. ze semen z Arménie bylo značné množství rostlin, které měly intermediární znaky křížence *P. salicifolia* PALL. × *P. syriaca* BOISS.

Na rozmanitost zakavkazských hrušní mělo vliv křížení. Pomineme-li okrajové oblasti, zúčastnil se ho hlavně *P. caucasica* FED. in GROSSG., *P. salicifolia* PALL. a *P. syriaca* BOISS. Je pravděpodobné, že i některé další druhy popsané ze Zakavkazska jsou jen notomorfami vzniklými z křížení různého stupně. Při vzniku některých forem se mohly uplatnit i mutace. Bez genetické analýzy je problém zakavkazských hrušní jen obtížně řešitelný.

REFERENCES

BROWICZ K. (1972): Pyrus L. – In: DAVIS P. H. [red.]: Flora of Turkey and the east Aegean islands 4: 160–168, Edinburgh.

GROSSGEJM A. A. (1952): Flora Kavkaza, Ed. 2, vol. 5. - Moskva et Leningrad.

KUTHATHELADZE Š. (1939): Generis Pyri L. e Georgia orientali species nova. - Notul. Syst. Geogr. Inst. Bot. Thbilissiensis 8 : 13-21.

RUBZOV G. A. (1939): Polymorphismus and centres of formation of Pyrus species in the USSR. - C. R. (Dokl.) Acad. Sci. URSS, Moscou, 24(1): 81-84.

SINSKAJA E. N. (1969): Istoričeskaja geografija kul'turnoj flory. - Leningrad.

Received 26 March, 1982